Abstract
Hierarchical classification problems are multi-class supervised learning problems with a predefined hierarchy over the set of class labels. In this work, we study the consistency of hierarchical classification algorithms with respect to a natural loss, namely the tree distance metric on the hierarchy tree of class labels, via the usage of calibrated surrogates. We first show that the Bayes optimal classifier for this loss classifies an instance according to the deepest node in the hierarchy such that the total conditional probability of the subtree rooted at the node is greater than \(\frac{1}{2} \). We exploit this insight to develop new consistent algorithm for hierarchical classification, that makes use of an algorithm known to be consistent for the “multiclass classification with reject option (MCRO)” problem as a subroutine. Our experiments on a number of benchmark datasets show that the resulting algorithm, which we term OvA-Cascade, gives improved performance over other state-of-the-art hierarchical classification algorithms.

1. Introduction
In many practical applications of the multiclass classification problem the class labels live in a pre-defined hierarchy. For example, in document classification the class labels are topics and they form topic hierarchies; in computational biology the class labels are protein families and they are also best organized in a hierarchy. See Figure 1 for an example hierarchy used in mood classification of speech. Such problems are commonly known in the machine learning literature as hierarchical classification.

Hierarchical classification has been the subject of many studies (Wang et al., 1999; Sun & Lim, 2001; Cai & Hofmann, 2004; Dekel et al., 2004; Rousu et al., 2006; Cesa-Bianchi et al., 2006a;b; Wang et al., 2011; Gopal et al., 2012; Babbar et al., 2013; Gopal & Yang, 2013). For a detailed review and more references we refer the reader to a survey on hierarchical classification by Silla Jr. & Freitas (2011).

The label hierarchy has been incorporated into the problem in various ways in different approaches. The most prevalent and technically appealing approach is to involve the hierarchy in the final evaluation metric and design an algorithm that does well on this evaluation metric. We shall work in the setting where class labels are single nodes in a tree, and use the very natural evaluation metric that penalizes predictions according to the tree-distance between the prediction and truth (Sun & Lim, 2001; Cai & Hofmann, 2004; Dekel et al., 2004).

While hierarchical classification problems are actively studied, there is a gap between theory and practice – even basic statistical properties of hierarchical classification algorithms have not been examined in depth. This paper addresses this gap and its main contributions are summarized below:
Convex Calibrated Surrogates for Hierarchical Classification

- We show that the Bayes optimal classifier for the tree-distance loss classifies an instance according to the deepest node in the hierarchy such that the total conditional probability of the subtree rooted at the node is greater than $\frac{1}{2}$.
- We reduce the problem of finding the Bayes optimal classifier for the tree-distance loss to the problem of finding the Bayes optimal classifier for multiclass classification with reject option (MCRO) problem.
- We construct a convex optimization based consistent algorithm for the tree-distance loss based on the above reduction and observe that in one particular instantiation called the OvA-cascade, this optimization problem can be solved only using binary SVM solvers.
- We run the OvA-cascade algorithm on several benchmark datasets and demonstrate improved performance.

2. Preliminaries

Let the instance space be X, and let $Y = [n] = \{1, \ldots, n\}$ be a finite set of class labels. Let $H = ([n], E, W)$ be a tree over the class labels, with edge set E, and positive, finite edge lengths for the edges in E given by W. Let the root node be $r \in [n]$. Let loss function $\ell^{H}: [n] \times [n] \rightarrow \mathbb{R}_+$ be

$$\ell^{H}(y, y') = \text{Shortest path length in } H \text{ between } y \text{ and } y'.$$

We call this the H-distance loss (or simply tree-distance loss). Given training examples $(X_1, Y_1), \ldots, (X_m, Y_m)$ drawn i.i.d. from a distribution D on $X \times Y$, the goal is to learn a prediction model $g : X \rightarrow [n]$ with low expected ℓ^{H}-regret defined as

$$R_D^{\ell^{H}}[g] = \mathbb{E}[\ell^{H}(Y, g(X))] - \inf_{g' : X \rightarrow [n]} \mathbb{E}[\ell^{H}(Y, g'(X))],$$

where expectations are over $(X, Y) \sim D$. Ideally, one wants the ℓ^{H}-regret of the learned model to be close to zero. An algorithm which when given a random training sample as above produces a (random) model $h_m : X \rightarrow T$ is said to be consistent w.r.t. ℓ^H if the ℓ^{H}-regret of the learned model g_m converges in probability to zero.

However, minimizing the discrete ℓ^{H}-regret directly is computationally difficult; therefore one uses instead a surrogate loss function $\psi : [n] \times \mathbb{R}^d \rightarrow \mathbb{R}_+$ for some $d \in \mathbb{Z}_+$ and learns a model $f : X \rightarrow \mathbb{R}^d$ by minimizing (approximately, based on the training sample) the ψ-error $\mathbb{E}_{(X,Y) \sim D}[\psi(Y, f(X))]$. Predictions on new instances $x \in X$ are then made by applying the learned model f and mapping back to predictions in the target space $[n]$ via some mapping $\Upsilon : \mathbb{R}^d \rightarrow [n]$, giving $g(x) = \Upsilon(f(x))$. Let the ψ-regret of a function $f : X \rightarrow \mathbb{R}^d$ be

$$R_D^{\psi}[f] = \mathbb{E}[\psi(Y, f(X))] - \inf_{f' : X \rightarrow \mathbb{R}^d} \mathbb{E}[\psi(Y, f'(X))].$$

Under suitable conditions, algorithms that approximately minimize the ψ-error based on a training sample are known to be consistent with respect to ψ, i.e. the ψ-regret of the learned model f approaches zero with larger training data. Also, if ψ is convex in its second argument, the ψ-error minimization problem becomes a convex optimization problem and can be solved efficiently.

We seek a surrogate $\psi : [n] \times \mathbb{R}^d \rightarrow \mathbb{R}_+$ for some $d \in \mathbb{Z}_+$ and a predictor $\Upsilon : \mathbb{R}^d \rightarrow [n]$ such that ψ is convex in its second argument and satisfies a bound of the following form holding for all $f : X \rightarrow \mathbb{R}^d$ and distributions D

$$R_D^{\psi}[\Upsilon \circ f] \leq \xi \cdot R_D^{\psi}[f], \quad (1)$$

where $\xi \geq 0$ is a constant. A surrogate and a predictor (ψ, Υ), satisfying such a bound, which we call a (ψ, ℓ^H, Υ)-excess risk transform would immediately give an algorithm consistent w.r.t. ℓ^H from an algorithm consistent w.r.t. ψ. We also say that such a (ψ, Υ) is calibrated [Zhang 2004] [Ramaswamy & Agarwal 2012] w.r.t. ℓ^H.

2.1. Conventions and Notations

Δ_n denotes the probability simplex in \mathbb{R}^n: $\Delta_n = \{p \in \mathbb{R}_+^n : \sum_i p_i = 1\}$.

For the tree $H = ([n], E, W)$ with root r we define the following several objects. For every $y \in [n]$ define the sets $D(y), C(y), U(y)$ as follows:

$$D(y) = \text{ Set of descendants of } y \text{ including } y$$

$$P(y) = \text{ Parent of } y$$

$$C(y) = \text{ Set of children of } y$$

$$U(y) = \text{ Set of ancestors of } y, \text{ not including } y.$$

For all $y \in [n]$, define the level of y denoted by $\text{lev}(y)$, and the mapping $S_y : \Delta_n \rightarrow [0, 1]$ as follows:

$$\text{lev}(y) = |U(y)|$$

$$S_y(p) = \sum_{i \in D(y)} p_i.$$

Let the height of the tree be $h = \max_{y \in [n]} \text{lev}(y)$. Define

1 For example, an algorithm consistent w.r.t. ψ can be obtained by minimizing the regularized empirical ψ-risk over an RKHS function class with Gaussian kernel and a regularization parameter approaching 0 with increasing sample size.

2 An inequality which upper bounds the ℓ^H-regret in terms of a function ξ of the ψ-regret, with $\xi(0) = 0$ and ξ continuous at 0 would also qualify to be an excess risk transform.
the sets $N_{=j}, N_{\leq j}$ and scalars α_j, β_j for $0 \leq j \leq h$ as:

$$N_{=j} = \{ y \in [n] : \text{lev}(y) = j \}$$

$$N_{\leq j} = \{ y \in [n] : \text{lev}(y) \leq j \}$$

$$\alpha_j = \max_{y,y' \in N_{=j}} \ell^H(y,y')$$

$$\beta_j = \max_{y \in N_{=j}} \ell^H(y, P(y)).$$

By reordering the classes we ensure that lev is a non-decreasing function and hence we always have that $N_{\leq j} = [n_j]$ for some integers n_j and $r = 1$.

For integers $0 \leq j \leq h$ define the function $\text{anc}_j : [n] \rightarrow N_{\leq j}$ and $A^j : \Delta_n \rightarrow \Delta_{n_j}$ such that for all $y \in [n], y' \in [n_j]$,

$$\text{anc}_j(y) = \begin{cases} y & \text{if } \text{lev}(y) \leq j \\ \text{ancestor of } y \text{ at level } j & \text{otherwise} \end{cases}$$

$$A^j_{y'}(\mathbf{p}) = \sum_{y' \in [n] : \text{anc}_j(y') = y'} p_i$$

$$= \begin{cases} p_y & \text{if } \text{lev}(y') < j \\ S_{y'}(\mathbf{p}) & \text{if } \text{lev}(y') = j \end{cases}.$$

Note that in all the above definitions the only terms that depend on the edge lengths W are the scalars α_j and β_j.

3. Bayes Optimal Classifier for the Tree-Distance Loss

In this section we characterize the Bayes optimal classifier minimizing the expected tree-distance loss. We show that such a predictor can be viewed as a ‘greater than $\frac{1}{2}$ conditional probability subtree detector’. We then design a scheme for computing this prediction based on this observation.

The following theorem is the key result of this section. Figure 2 gives an illustration for this theorem.

Theorem 1. Let $H = ([n], E, W)$ and let $\ell^H : [n] \times [n] \rightarrow \mathbb{R}_+$ be the tree-distance loss for the tree H. For $x \in X$, let $\mathbf{p}(x) \in \Delta_n$ be the conditional probability of the label given the instance x. Then there exists a $g^* : X \rightarrow [n]$ such that for all $x \in X$ the following holds:

(a) $S_{g^*}(x)(\mathbf{p}(x)) \geq \frac{1}{2}$

(b) $S_y(\mathbf{p}(x)) \leq \frac{1}{2}, \forall y \in C(g^*(x)).$

Also, g^* is a Bayes optimal classifier for the tree distance loss, i.e.

$$\mathbf{R}^H_D[g^*] = 0.$$

For any instance x, with conditional probability $\mathbf{p} \in \Delta_n$, Theorem 1 says that predicting $y \in [n]$ that has the largest level and has $S_y(\mathbf{p}) \geq \frac{1}{2}$ is optimal. Surprisingly, this does not depend on the edge lengths W.

Theorem 1 suggests the following scheme to find the optimal prediction for a given instance, with conditional probability \mathbf{p}:

1. For each $j \in \{1, 2, \ldots, h\}$ create a multiclass problem instance with the classes being elements of $N_{\leq j} = [n_j]$, and the probability associated with each class in $y \in N_{\leq j}$ is equal to $A^j_{y'}(\mathbf{p})$, i.e. p_y if $\text{lev}(y) < j$ and equal to $S_{y'}(\mathbf{p})$ if $\text{lev}(y) = j$.

2. For each multiclass problem $j \in \{1, 2, \ldots, h\}$, if there exists a class with probability mass at least $\frac{1}{2}$ assign it to v^*_j, otherwise let $v^*_j = \bot$.

3. Find the largest j such that $v^*_j \neq \bot$ and return the corresponding v^*_j, or return the root 1 if $v^*_j = \bot$ for all $j \in [h]$.

We will illustrate the above procedure for the example in Figure 2.

Example 1. From Figure 2 we have that $h = 3$. The three induced multiclass problems are given below.

1. $n_1 = 3$, and the class probabilities are given as $\frac{1}{10}[0, 3, 7]$. Clearly, $v^*_1 = 3$.

2. $n_2 = 7$, and the class probabilities are given as $\frac{1}{10}[0, 2, 0, 1, 0, 1, 6]$. Clearly $v^*_2 = 7$.

3. $n_3 = 11$, and the class probabilities are given as $\frac{1}{10}[0, 2, 0, 1, 0, 0, 0, 2, 1, 0, 2, 2]$. Clearly, $v^*_3 = \bot$.

And hence the largest j such that $v^*_j \neq \bot$ is 2, and the scheme returns $v^*_2 = 7$.
The reason such a scheme as the one above is of interest to us is that the second step in the above scheme exactly corresponds to the Bayes optimal classifier for the abstain loss, the evaluation metric used in the MCRO problem, which we briefly explain in the next section.

4. Multiclass Classification with Reject Option

In some multiclass problems like medical diagnosis, it is better to abstain from predicting on instances where the learner is uncertain rather than predicting the wrong class. This feature can be incorporated via an evaluation metric called the abstain loss, and designing algorithms that perform well on this evaluation metric instead of the standard zero-one loss. The n-class abstain loss $\ell^{\ast,n} : \{\ast\} \times \{0, \ldots, n\} \rightarrow \mathbb{R}_+$ (Ramaswamy et al., 2015) is defined as

$$\ell^{\ast,n}(y, y') = \begin{cases} 1 & \text{if } y' \neq y \text{ and } y' \neq \ast \\ \frac{1}{2} & \text{if } y' = \ast \\ 0 & \text{if } y' = y \end{cases}.$$

It can be seen that the Bayes optimal risk for the abstain loss is attained by the function $g^{\ast} : \mathcal{X} \rightarrow \{0, \ldots, n\}$ given by

$$g^{\ast}(x) = \operatorname{argmax}_y p(y|x),$$

where $p(y|x) = \mathbb{P}(Y = y|X = x)$.

The $\ell^{\ast,n}$-regret of a function $g : \mathcal{X} \rightarrow \{\ast\}$ is

$$R_D^{\ell^{\ast,n}}[g] = \mathbb{E}[\ell^{\ast,n}(Y, g(X))] - \inf_g \mathbb{E}[\ell^{\ast,n}(Y, g'(X))].$$

Ramaswamy et al. (2015) give three different surrogates and predictors with excess risk transforms relating the surrogate regret to the $\ell^{\ast,n}$-regret, one of which we give below.

Define the surrogate $\psi_{\text{OvA},n} : \{\ast\} \times \mathbb{R}_+ \rightarrow \mathbb{R}_+$ and predictor $\Upsilon_{\text{OvA},n} : \mathbb{R}_+ \rightarrow \{0, \ldots, n\}$ as

$$\psi_{\text{OvA},n}(y, u) = \sum_{i=1}^n \mathbf{1}\left(\psi = i\right) \left(1-u_i\right) + \mathbf{1}\left(y \neq i\right) \left(1+u_i\right),$$

$$\Upsilon_{\text{OvA},n}(u) = \begin{cases} \operatorname{argmax}_i u_i \ U_i & \text{if } \max_j u_j > \tau \\ \ast & \text{otherwise} \end{cases},$$

where $(\ast)_+ = \max(\ast, 0)$ and $\tau \in (-1, 1)$ is a threshold parameter, and ties are broken arbitrarily, say, in favor of the label y with the smaller index.

The following theorem by Ramaswamy et al. (2015), gives an $(\psi_{\text{OvA},n}, \ell^{\ast,n}, \Upsilon_{\text{OvA},n})$-excess risk transform.

\[\text{Theorem } 2 \text{ ((Ramaswamy et al., 2015)). Let } n \in \mathbb{N} \text{ and } \tau \in (-1, 1). \text{ Let } D \text{ be any distribution over } \mathcal{X} \times \{\ast\}. \text{ Then, for all } f : \mathcal{X} \rightarrow \mathbb{R}_+^{n}, \]

$$R_D^{\ell^{\ast,n}}[\Upsilon_{\text{OvA},n} \circ f] \leq \frac{1}{2(1 - |\tau|)} R_D^{\psi_{\text{OvA},n}}[f].$$

In the next section we use such surrogates calibrated with the abstain loss as a black box to construct calibrated surrogates for the tree-distance loss.

5. Cascade Surrogate for Hierarchical Classification

In this section we construct a template surrogate ψ_{cas} and template predictor Υ_{cas} based on the scheme in section 3 and is constituted of simpler surrogates ψ_j and predictors Υ_j. We then give a $(\psi_{\text{cas}}, \ell^H, \Upsilon_{\text{cas}})$-excess risk transform assuming the existence of abstain loss excess risk transforms for the component surrogates and predictors, i.e. $(\psi_j, \ell^{\ast,j}, \Upsilon_j)$-excess risk transforms.

For all $j \in \{1, 2, \ldots, h\}$, let the surrogate $\psi_j : \{\ast\} \times \mathbb{R}_+^d \rightarrow \mathbb{R}_+$ and predictor $\Upsilon_j : \mathbb{R}_+^d \rightarrow \{\ast\}$ be such that they are calibrated w.r.t. the abstain loss with n_j classes for some integers d_j. Let $d = \sum_{j=1}^h d_j$. Let any $\mathbf{u} \in \mathbb{R}_+^d$ be decomposed as $\mathbf{u} = [\mathbf{u}_1, \ldots, \mathbf{u}_h]^\top$, with each $\mathbf{u}_j \in \mathbb{R}_+^{d_j}$. The template surrogate, that we call the cascade surrogate $\psi_{\text{cas}} : \{\ast\} \times \mathbb{R}^d \rightarrow \mathbb{R}_+$, is defined in terms of its constituent surrogates as follows:

$$\psi_{\text{cas}}(y, \mathbf{u}) = \sum_{j=1}^h \psi_j(\text{anc}_j(y), \mathbf{u}_j).$$

The template predictor, Υ_{cas}, is defined via the function $\Upsilon_{\text{cas}} : \mathbb{R}_+^d \rightarrow \{\ast\}$ which is defined recursively as follows:

$$\Upsilon_{\text{cas}}(\mathbf{u}_1, \ldots, \mathbf{u}_j) = \begin{cases} \Upsilon_j(\mathbf{u}_j) & \text{if } \Upsilon_{\text{cas}}(\mathbf{u}_1, \ldots, \mathbf{u}_{j-1}) \neq \ast \\ \Upsilon_{\text{cas}}(\mathbf{u}_1, \ldots, \mathbf{u}_{j-1}) & \text{otherwise} \end{cases}.$$
over $\mathcal{X} \times [n]$ given by the distribution of $(X, \text{anc}_j(Y))$ with $(X, Y) \sim D$. For all $j \in [h]$, let $f_j : \mathcal{X} \rightarrow \mathbb{R}^{d_j}$ be such that $f(x) = [f_1(x)^T, \ldots, f_j(x)^T]^T$. Then for all distributions D over $\mathcal{X} \times [n]$ and all functions $f : \mathcal{X} \rightarrow \mathbb{R}^d$
\[
R_D^{\ell_H} [\Upsilon^{\text{cas}} \circ f] \leq \sum_{j=1}^h 2\alpha_j \cdot R_{A_j}(D) [\Upsilon_j \circ f_j].
\]

Proof. (Outline:)

Due to linearity of expectation, it is sufficient to fix a singleton \mathcal{X}, and give proofs for all distributions $p \in \Delta_n$ over class labels, instead of all distributions D over $\mathcal{X} \times \mathcal{Y}$.

For a given conditional probability vector $p \in \Delta_n$, and vector $u \in \mathbb{R}^d$, the analysis is based on whether the abstain loss predictor at the deepest level (level farthest from root) abstains or not.

1. If the abstain loss predictor at the deepest level does not abstain (Case 1 in the proof), then the tree-distance regret is bounded by the maximum distance between any two nodes at the deepest level α_h, with a discount factor depending on the conditional probability of the predicted class. This can be simply be bounded by $2\alpha_h$ times the abstain loss regret.

2. If the abstain loss predictor at the deepest level does abstain and the optimal prediction is not in the deepest level (Case 2a in the proof), then prediction for the deepest level is ‘correct’ and hence one can show that the tree-distance regret is simply bounded by the tree-distance regret for the modified problem where all the probability mass associated with the nodes in deepest level are absorbed by their parents.

3. If the abstain loss predictor at the deepest level does abstain and the optimal prediction is in the deepest level (Case 2b in the proof), then one can bound the tree-distance regret by the sum of two terms –

- (a) The abstain loss regret, weighted by twice the largest distance between any node at the deepest level and its parent β_h. This captures the error made by choosing to predict at a shallower level than the level of optimal prediction.

- (b) The tree-distance regret on the modified problem mentioned in case 2a. This captures the error made on shallower levels.

In all cases, the tree-distance regret can be bounded by the sum of the tree-distance regret on the modified problem and $2\alpha_h$ times the abstain loss regret. Applying this bound recursively gets our desired bound. \hfill \square

Lemma 3 bounds the ℓ_H regret on distribution D, by a weighted sum of abstain loss regrets, each over a modified distribution derived from D. Each of the components of the surrogate ψ^{cas} is exactly designed to minimize the abstain loss for the corresponding modified distribution. Assuming a $(\psi^j, \ell^j, \Upsilon^j)$-excess risk transform for all $j \in [h]$, one can easily derive $(\psi^{\text{cas}}, \ell_H, \Upsilon^{\text{cas}})$-excess risk transform as in Equation 1. This is done in the theorem below.

Theorem 4. Let $H = ([n], E, W)$ be a tree with height h. For all $j \in [h]$, let $\psi^j : [n_j] \times \mathbb{R}^{d_j} \rightarrow \mathbb{R}_+$ and $\Upsilon^j : \mathbb{R}^{d_j} \rightarrow [n_j]$ be such that for all $f_j : \mathcal{X} \rightarrow \mathbb{R}^{d_j}$, and all distributions D over $\mathcal{X} \times [n]$ we have
\[
R_D^{\ell_H} [\Upsilon^j \circ f_j] \leq C \cdot R_D^{\psi^j} [f_j],
\]
for some constant $C > 0$. Then for all $f : \mathcal{X} \rightarrow \mathbb{R}^d$ and distributions D over $\mathcal{X} \times [n]$, $\forall y,y' \in [n]$, $\forall j \in [h]$
\[
R_D^{\ell_H} [\Upsilon^{\text{cas}} \circ f] \leq 2C \cdot \max_{y,y' \in [n]} \ell_H(y, y') \cdot R_D^{\psi^{\text{cas}}} [f].
\]

Hence one just needs to plug in an appropriate surrogate ψ^j to get concrete consistent algorithms for hierarchical classification. The results of Ramaswamy et al. (2015) give three such surrogates, but we will focus on the one-vs-all hinge surrogate here, as the resulting algorithm can be easily parallelized and gives the best empirical results.

6. OvA-Cascade Algorithm

When $\psi^j = \psi^{\text{OvA}, n_j}$ and $\Upsilon^j = \Upsilon^{\text{OvA}, n_j}$ for some $\tau_j \in (-1, 1)$, we call the resulting cascade surrogate ψ^{cas} and predictor Υ^{cas} together as OvA-Cascade. In this case we have $d_j = n_j$. In the surrogates minimizing algorithm for OvA-cascade, one solves h one-vs-all SVM problems. Problem j has n_j classes, with the classes corresponding to the n_{j-1} nodes in the hierarchy at level less than j, and n_j super-nodes in the hierarchy at level j which also absorb the nodes of its descendents. The resulting training and prediction algorithms can thus be simplified and they are presented in Algorithms 1 and 2. The training phase requires an SVM optimization sub-routine, SVM-Train, which takes in a binary dataset and a regularization parameter C and returns a real valued function over the instance space minimizing the regularized hinge loss over an appropriate function space.

Theorems 2 and 4 immediately give the following corollary.

Corollary 5. Let $H = ([n], E, W)$ be a tree with height h. Let the component surrogates and predictors of ψ^{cas} and Υ^{cas} be $\psi^j = \psi^{\text{OvA}, n_j}$ and $\Upsilon^j = \Upsilon^{\text{OvA}, n_j}$. Then, for all distributions D and functions $f : \mathcal{X} \rightarrow \mathbb{R}^d$, $\forall y,y' \in [n]$
\[
R_D^{\ell_H} [\Upsilon^{\text{cas}} \circ f] \leq \max_{y,y' \in [n]} \frac{\ell_H(y, y')}{1 - \max_{j \in [h]} |\tau_j|} \cdot R_D^{\psi^{\text{cas}}} [f].
\]
Algorithm 1 OVA-Cascade Training

Input: \(S = ((x_1, y_1), \ldots, (x_m, y_m)) \in (X \times [n])^m \), \(H = ([n], E) \).

Parameters: Regularization parameter \(C > 0 \)

for \(i = 1 \to n \)

Let \(t_j = 2 \cdot 1(y_j \in D(i)) - 1 \), \(\forall j \in [m] \)

\(T_i = ((x_1, t_1), \ldots, (x_m, t_m)) \in (X \times \{+1, -1\})^m \). \(f_i = \text{SVM-Train}(T_i, C) \)

Let \(t'_j = 2 \cdot 1(y_j = i) - 1 \), \(\forall j \in [m] \)

\(T'_i = ((x_1, t'_1), \ldots, (x_m, t'_m)) \in (X \times \{+1, -1\})^m \). \(f'_i = \text{SVM-Train}(T'_i, C) \)

end for

Algorithm 2 OVA-Cascade Prediction

Input: \(x \in X \), \(H = ([n], E) \), trained models \(f_i \), \(f'_i \) for all \(i \in [n] \)

Parameters: Scalars \(\tau_1, \ldots, \tau_h \) in \((-1, 1)\)

for \(j = h \) down to 1

Construct \(u \in \mathbb{R}^n_j \) such that,

\[
u_i = \begin{cases} f_i(x) & \text{if } \text{lev}(i) = j \\ f'_i(x) & \text{if } \text{lev}(i) < j \end{cases}\]

if \(\max_i u_i > \tau_j \)

return \(\text{argmax}_i u_i \)

end for

return 1

To get the best bound from Corollary 7, one must set \(\tau_j = 0 \) for all \(j \in [h] \). However, using a slightly more intricate version of Theorem 6 and Lemma 5 one can give a better upper bound for the \(\ell^H \)-regret than in Theorem 4 and this tighter upper bound is minimized for a different \(\tau_j \). This observation is captured by the Theorem below.

Theorem 6. Let \(H = ([n], E, W) \) be a tree with height \(h \).

For all \(j \in [h] \), let \(\alpha_j = \max_{y, y' \in N_j} \ell^H(y, y') \) and let \(\beta_j = \max_{y \in N_j} \ell^H(y, P(y)) \). For \(j \in [h] \), let \(\tau_j = \frac{\alpha_j - \beta_j}{\alpha_j + \beta_j} \).

Let the component surrogates and predictors of \(\psi^{\text{cas}} \) and \(\Upsilon^{\text{cas}} \) be \(\psi^j = \psi^{\text{OvA}, n_j} \) and \(\Upsilon^j = \Upsilon^{\text{OvA}, n_j} \)

Then, for all distributions \(D \) and functions \(f : X \to \mathbb{R}^d \),

\[
R^H_D[\Upsilon^{\text{cas}} \circ f] \leq \frac{1}{2} \max_j (\alpha_j + \beta_j) \cdot R^H_D[f] .
\]

One can clearly see the effect of improved bounds given by setting \(\tau_j \) as in Theorem 6 for the unweighted hierarchy, in which case \(\alpha_j = 2j \) and \(\beta_j = 1 \).

Corollary 7. Let the hierarchy \(H \) be an unweighted tree with all edges having length 1.

Let the component surrogates and predictors of \(\psi^{\text{cas}} \) and \(\Upsilon^{\text{cas}} \) be \(\psi^j = \psi^{\text{OvA}, n_j} \) and \(\Upsilon^j = \Upsilon^{\text{OvA}, n_j} \).

\[
a. \text{ For all } j \in [h] \text{ let } \tau_j = 0, \text{ then, for all distributions } D
\]

\[
\]
7.2. Algorithms

We run a variety of algorithms on the above datasets. The details of the algorithms are given below.

Root: This is a simple baseline method where the returned classifier always predicts the root of the hierarchy.

OVA: This is the standard One vs All algorithm which completely ignores the hierarchy information and treats the problem as one of standard multiclass classification.

HSVM-margin and HSVM-slack: These algorithms are Struct-SVM like (Tsochantaridis et al., 2005) algorithms for the tree-distance loss as proposed in Cai & Hofmann (2004). HSVM-margin and HSVM-slack use margin and slack rescaling respectively, and are considered among the state-of-the-art algorithms for hierarchical classification.

OVA-Cascade: This is the algorithm in which we minimize the surrogate ψ^{OVA} with the component surrogates being $\psi^j = \psi^{\text{OVA},n_j}$, and is detailed as Algorithms 1 and 2. All the datasets in Table 1 have the property that all instances are associated only with a leaf-label (note however that we can still predict interior nodes), and hence the step of computing f'_i in Algorithm 1 can be skipped, and f'_i can be set to be identically equal to negative infinity for all $i \in [n]$. Note that, in this case, the training phase is very similar to the ‘less-inclusive policy’ using the ‘local node approach’ (Silla Jr. & Freitas, 2011). We use LIBLINEAR (Fan et al., 2008) for the SVM-train subroutine and use the simple linear kernel. The regularization parameter C is chosen via a separate validation set. The thresholds τ_j for $j \in [h]$ are also chosen via a coarse grid search using the validation set.

Plug-in classifier: This algorithm is based on estimating the conditional probabilities using a logistic loss. Specifically, it estimates $S_y(p)$ for all non-root nodes y. This is done by creating a binary dataset for each y, with instances having labels which are the descendants of y being positive and the rest being negative, and running a logistic regression algorithm on this dataset. The final predictor is simply based on Theorem 1, it chooses the deepest node y such that the estimated value of $S_y(p)$ is greater than $\frac{1}{2}$.

CS-Cascade: This algorithm also minimizes the cascade surrogate ψ^{cas}, but with the component surrogates ψ^j being the Crammer-Singer surrogate (Crammer & Singer, 2001). From the results of Ramaswamy et al. (2015), one can derive excess risk transforms for the resulting cascade surrogate as well. As all instances have labels which are leaf nodes, the h subproblems all turn out to be multiclass learn-
Convex Calibrated Surrogates for Hierarchical Classification

ing problems with \(n_j \) classes for each of which we use the Crammer-Singer algorithm. We optimize the Crammer-Singer surrogate over the standard multiclass linear function class using the LIBLINEAR software. Once again we use the same regularization parameter \(C \) for all the \(h \) problems which we choose using the validation set. We also use a threshold vector tuned on the validation set over a coarse grid.

The three algorithms OvA-Cascade, Probability estimation and CS-cascade are all motivated by our analysis and would form consistent algorithms for the tree-distance loss if used with an appropriate function class.

7.3. Discussion of Results

Table 2 gives the average tree-distance loss incurred by various algorithms on some standard datasets and Table 3 gives the times taken for running these algorithms on a 4-core CPU. Some of the algorithms, like HSVM, and CS-cascade could not be run on the larger datasets due to memory issues. In the smaller datasets of CLEF and LSHTC-small where all the algorithms could be run, the algorithms motivated by our analysis – OvA-cascade, Plug-in and CS-cascade – perform the best. In the bigger datasets, only the OvA-cascade, plug-in and the flat OvA algorithms could be run, and both OvA-cascade and Plug-in perform significantly better than the flat OvA. While both OvA-cascade and Plug-in give comparable error performance, the OvA-cascade only takes about half as much time as the Plug-in and hence is more preferable.

8. Conclusion

The reduction of the hierarchical classification problem to the problem of multiclass classification with a reject option gives an interesting and powerful family of algorithms. Extending such results to other related settings, such as the case where there is a graph over the set of class labels, or where a subset of the label set is allowed to be predicted instead of a single label, are interesting future directions.

Acknowledgements

HGR and AT gratefully acknowledge the support of NSF via grant CCF-1422157. HGR also acknowledges support from TCS via a PhD Fellowship and a grant from the Indo-US virtual institute for mathematical and statistical sciences (VIMSS). SA acknowledges support from the Department of Science & Technology (DST) of the Indian Government under a Ramanujan Fellowship, from the Indo-US Science & Technology Forum (IUSSTF), and from Yahoo in the form of an unrestricted grant.

References

\(^3\)HSVM, and CS-cascade effectively only use a single core due to lack of parallelization.
Convex Calibrated Surrogates for Hierarchical Classification

A. Additional Notation and Setup

Let μ be the marginal distribution induced by D over \mathcal{X}, and let $p(x)$ be the distribution over $[n]$ conditioned on $X = x$. For every function $\ell : [n] \times [k] \to \mathbb{R}_+$ and $t \in [k]$ let $\ell_t = \ell(t,1), \ldots, \ell(n,t))^T \in \mathbb{R}^n$. For every surrogate $\psi : [n] \times \mathbb{R}^d \to \mathbb{R}_+$ let $\psi : \mathbb{R}^d \to \mathbb{R}^n$ be a vector function such that $\psi_y(u) = \psi(y,u)$ for $y \in [n], u \in \mathbb{R}^d$. For any integer $d' \in \mathbb{Z}_+$ and pair of vectors $u, v \in \mathbb{R}^{d'}$, their inner product is denoted as $(u,v) = \sum_{i=1}^{d'} u_i v_i$. For a vector $u \in \mathbb{R}^n$ and a positive integer $a \leq n$, the vector $u|_{1:a} \in \mathbb{R}^a$ gives the first a components of u.

Define the conditional regrets $R_p^{\mu t}, R_p^{\mu a}$ and $R_p^{\mu u}$ as the regrets incurred for a singleton instance space \mathcal{X}, with conditional probability $p \in \Delta_n$. In particular, we have that

$$R_p^{\mu t}[y] = \langle p, \ell_y^t \rangle - \inf_{y' \in [n]} \langle p, \ell_y^{t'} \rangle, \quad \forall y \in [n]$$

$$R_p^{\mu a}[y] = \langle p, \ell_y^a \rangle - \inf_{y' \in [n] \cup \{\bot\}} \langle p, \ell_y^{a'} \rangle, \quad \forall y \in [n] \cup \{\bot\}$$

$$R_p^{\mu u}[u] = \langle p, \psi(u) \rangle - \inf_{u' \in \mathbb{R}^d} \langle p, \psi(u') \rangle, \quad \forall u \in \mathbb{R}^d.$$

Let μ be the marginal distribution induced by D over \mathcal{X}, and let $p(x)$ be the distribution over $[n]$ conditioned on $X = x$. Then we have by linearity of expectation that,

$$R_p^{\mu t}[y] = \mathbb{E}_{X \sim \mu} R_p^{\mu t}[g(X)]$$

(4)

$$R_p^{\mu a}[g'] = \mathbb{E}_{X \sim \mu} R_p^{\mu a}[g'(X)]$$

(5)

$$R_p^{\mu u}[f] = \mathbb{E}_{X \sim \mu} R_p^{\mu u}[f(X)] .$$

(6)

For all $0 \leq j \leq h$, define $\ell^{h,j} : [n_1] \times [n_2] \to \mathbb{R}_+$ as simply the restriction of ℓ^H to $[n_1] \times [n_2]$.

B. Proofs

B.1. Proof of Theorem 1

Theorem. Let $H = ([n], E, W)$ and let $\ell^H : [n] \times [n] \to \mathbb{R}_+$ be the tree-distance loss for the tree H. Let $p \in \Delta_n$, and $y \in [n]$. Then there exists a $g^* : \mathcal{X} \to [n]$ such that for all $x \in \mathcal{X}$ the following holds:

(a) $S_{g^*}(p(x)) \geq \frac{1}{2}$

(b) $S_y(p(x)) \leq \frac{1}{2}, \forall y \in C(g^*(x))$.

Also, g^* is a Bayes optimal classifier for the tree distance loss, i.e.

$$R_p^{\mu t}[g^*] = 0 .$$

Proof. We shall simply show for all $p \in \Delta_n$, there exists a $y^* \in [n]$ such that

$$S_{y^*}(p) \geq \frac{1}{2}, \quad (7)$$

$$S_y(p) \leq \frac{1}{2}, \quad \forall y \in C(y^*) , \quad (8)$$
Putting all three cases together we have

\[\langle p, \ell_H^y \rangle = \min_{y \in [n]} \langle p, \ell_H^{\hat{y}} \rangle. \]

This would imply \(R_{\ell_H}^{\hat{y}} | y^* \rangle = 0 \). The theorem then simply follows from linearity of expectation using Equation 4.

Let \(p \in \Delta_n \). We construct a \(y^* \in [n] \) satisfying Equations 7 and 8 in the following way. We start at the root node, which always satisfies Equation 7, and keep on moving to the child of the current node that satisfies Equation 7, and terminate when we reach a leaf node, or a node where all of its children fail Equation 7. Clearly the resulting node, \(y^* \), satisfies both Equations 7 and 8.

Now we show that \(y^* \) indeed minimizes \(\langle p, \ell_H^y \rangle \) over \(y \in [n] \).

Let \(y' \in \text{argmin}_y \langle p, \ell_H^y \rangle \). If \(y' = y^* \) we are done, hence assume \(y' \neq y^* \).

Case 1: \(y' \notin D(y^*) \)

\[
\langle p, \ell_H^{\hat{y}} \rangle - \langle p, \ell_H^{\hat{y}'} \rangle = \sum_{y \in D(y^*)} p_y (\ell^H(y, y') - \ell^H(y, y^*)) + \sum_{y \notin [n] \setminus D(y^*)} p_y (\ell^H(y, y') - \ell^H(y, y^*))
\]

\[
\geq \sum_{y \in D(y^*)} p_y (\ell^H(y, y') - \ell^H(y, y^*)) + \sum_{y \notin [n] \setminus D(y^*)} p_y (\ell^H(y, y') - \ell^H(y, y^*))
\]

\[
= \ell^H(y', y^*)(2S_{\hat{y}'}(p) - 1)
\]

\[
\geq 0
\]

Case 2: \(y' \in D(y^*) \setminus C(y^*) \)

Let \(\hat{y} \) be the child of \(y^* \) that is the ancestor of \(y' \). Hence we have \(S_{\hat{y}}(p) \leq \frac{1}{2} \).

\[
\langle p, \ell_H^{\hat{y}'} \rangle - \langle p, \ell_H^{\hat{y}'} \rangle = \sum_{y \in D(\hat{y})} p_y (\ell^H(y, y') - \ell^H(y, y^*)) + \sum_{y \notin [n] \setminus D(\hat{y})} p_y (\ell^H(y, y') - \ell^H(y, y^*))
\]

\[
\geq \sum_{y \in D(\hat{y})} p_y (\ell^H(y, y') - \ell^H(y, y^*)) + \sum_{y \notin [n] \setminus D(\hat{y})} p_y (\ell^H(y, y') - \ell^H(y, y^*))
\]

\[
= \ell^H(y', y^*)(1 - 2S_{\hat{y}}(p))
\]

\[
\geq 0
\]

Case 3: \(y' \in C(y^*) \)

\[
\langle p, \ell_H^{\hat{y}'} \rangle - \langle p, \ell_H^{\hat{y}'} \rangle = \sum_{y \in D(\hat{y})} p_y (\ell^H(y, y') - \ell^H(y, y^*)) + \sum_{y \notin [n] \setminus D(\hat{y})} p_y (\ell^H(y, y') - \ell^H(y, y^*))
\]

\[
\geq \sum_{y \in D(\hat{y})} p_y (\ell^H(y, y') - \ell^H(y, y^*)) + \sum_{y \notin [n] \setminus D(\hat{y})} p_y (\ell^H(y, y') - \ell^H(y, y^*))
\]

\[
= \ell^H(y', y^*)(1 - 2S_{\hat{y}'}(p))
\]

\[
\geq 0
\]

Putting all three cases together we have
\[\langle \mathbf{p}, \ell^H_{y'} \rangle \leq \langle \mathbf{p}, \ell^H_y \rangle = \min_{y \in [n]} \langle \mathbf{p}, \ell^H_y \rangle. \]

B.2. Proof of Lemma 3

We first give the proof of a stronger version of Lemma 3.

Lemma 8. For all \(\mathbf{p} \in \Delta_n, \mathbf{u} \in \mathbb{R}^d \) we have

\[R_{\mathbf{p}}^{H,j} [\mathcal{T}^\text{cas}(\mathbf{u})] \leq \sum_{j=1}^{h} \gamma_j(\mathbf{u}_j) \cdot R_{\mathbf{u}/(\mathbf{p})}^{\ell^{',n_j}} [\mathcal{T}^j_j(\mathbf{u}_j)], \]

where \(\gamma_j(\mathbf{u}_j) = \begin{cases} 2 \alpha_j & \text{if } \mathcal{T}^j_j(\mathbf{u}_j) \neq \bot \\ 2 \beta_j & \text{if } \mathcal{T}^j_j(\mathbf{u}_j) = \bot. \end{cases} \)

Proof. For all \(j \in [h] \), we will first prove a bound relating the tree-distance regret at level \(j \), with the tree-distance regret at level \(j - 1 \) and abstain loss regret at level \(j \) as follows:

\[R_{\mathbf{u}/(\mathbf{p})}^{H,j} [\mathcal{T}^j_{j}(\mathbf{u})] \leq R_{\mathbf{u}/(\mathbf{p})}^{H,j-1} [\mathcal{T}^{j}_{j-1}(\mathbf{u})] + \gamma_j(\mathbf{u}_j) \cdot R_{\mathbf{u}/(\mathbf{p})}^{\ell^{',n_j}} [\mathcal{T}^j_j(\mathbf{u}_j)]. \]

The theorem would simply follow from applying such a bound recursively and observing that \(R_{\mathbf{u}/(\mathbf{p})}^{H,0} [\mathcal{T}^0_0(\mathbf{u})] = 0 \).

One observation of the tree-distance loss that will be often of use in the proof is the following:

\[\ell^H(y, y') - \ell^H(P(y), y') = \begin{cases} -\ell^H(y, P(y)) & \text{if } y' \in D(y) \\ \ell^H(y, P(y)) & \text{otherwise} \end{cases} \]

The details of the proof follows: Fix \(j \in [h], \mathbf{u} \in \mathbb{R}^d, \mathbf{p} \in \Delta_n \).

Let \(y^*_j = \arg\min_{y \in [n]} R_{\mathbf{u}/(\mathbf{p})}^{H,j} [y] \).

Case 1: \(\mathcal{T}^j_j(\mathbf{u}_j) \neq \bot \)

\[R_{\mathbf{u}/(\mathbf{p})}^{H,j} [\mathcal{T}^j_{j}(\mathbf{u})] = \sum_{y=1}^{n_j} A^j_y(\mathbf{p}) \left(\ell^H(y, \mathcal{T}^j_{j}(\mathbf{u})) - \ell^H(y, y^*_j) \right) \]

\[\leq \ell^H(y^*_j, \mathcal{T}^j_{j}(\mathbf{u}))(1 - 2A^j_{y^*_j}(\mathbf{p})) \] \tag{9}

We also have,

\[R_{\mathbf{u}/(\mathbf{p})}^{H,j} [\mathcal{T}^j_{j}(\mathbf{u})] = 1 - A^j_{y^*_j}(\mathbf{u})(\mathbf{p}) - \min_{y \in [n], y \neq y^*_j} \langle A^j(\mathbf{p}), \ell^{',n_j}_y \rangle \]

\[\geq 1 - A^j_{y^*_j}(\mathbf{u})(\mathbf{p}) - \langle A^j(\mathbf{p}), \ell^{',n_j}_y \rangle \]

\[= \frac{1}{2} - A^j_{y^*_j}(\mathbf{u})(\mathbf{p}) \]

\[= \frac{1}{2} - A^j_{y^*_j}(\mathbf{u})(\mathbf{p}) \] \tag{10}

The last inequality above follows because if \(\mathcal{T}^j_j(\mathbf{u}_j) \neq \bot \), then \(\mathcal{T}^{j_{n_j}}(\mathbf{u}) = \mathcal{T}^j_j(\mathbf{u}_j) \).
Putting Equations 9 and 10 together, we get
\[
R_{A^{(p)}}^{H,j} [T_j^{\text{as}}(u)] \leq 2 \epsilon^H(y_j', T_j^{\text{as}}(u)) \cdot R_{A^{(p)}}^{H,j} [T_j'(u_j)] \\
\leq 2 \alpha_j \cdot R_{A^{(p)}}^{H,j} [T_j'(u_j)]
\] (11)

Case 2: \(T_j'(u_j) = ⊥ \)

In this case \(T_j^{\text{as}}(u) = T_j^{\text{as}}_{j-1}(u) \), and hence \(\text{lev}(T_j^{\text{as}}(u)) \leq j - 1 \).

We now have,
\[
\langle A^{-1}(p), \ell_{T_j^{\text{as}}(u)}^{H,j} \rangle - \langle A^{(p)}, \ell_{T_j^{\text{as}}_{j-1}(u)}^{H,j} \rangle = \langle A^{-1}(p), \epsilon_{T_j^{\text{as}}_{j-1}(u)}^{H,j-1} \rangle - \langle A^{(p)}, \epsilon_{T_j^{\text{as}}_{j-1}(u)}^{H,j-1} \rangle \\
+ \langle A^{-1}(p), \epsilon_{T_j^{\text{as}}_{j-1}(u)}^{H,j-1} \rangle - \langle A^{(p)}, \epsilon_{T_j^{\text{as}}_{j-1}(u)}^{H,j-1} \rangle \\
\leq \sum_{y \in N_{j-1}} S_y(p)(\epsilon^H(y, T_j^{\text{as}}(u))) - \ell^H(P(y), T_j^{\text{as}}(u))) \\
= \sum_{y \in N_{j-1}} S_y(p)(\epsilon^H(y, P(y)))
\] (12)

For ease of analysis, we divide case 2, further into two sub-cases.

Case 2a: \(\text{lev}(y_j') < j \)

\[
\langle A^{-1}(p), \ell_{y_j'_{j-1}}^{H,j-1} \rangle - \langle A^{(p)}, \ell_{y_j'_{j-1}}^{H,j} \rangle \leq \langle A^{-1}(p), \epsilon_{T_j^{\text{as}}_{j-1}(u)}^{H,j-1} \rangle - \langle A^{(p)}, \epsilon_{T_j^{\text{as}}_{j-1}(u)}^{H,j-1} \rangle \\
+ \sum_{y \in N_{j-1}} S_y(p)(\epsilon^H(y, P(y_j')) - \ell^H(y, y_j')) \\
= \sum_{y \in N_{j-1}} S_y(p)(-\ell^H(y, P(y_j')))
\] (13)

Adding, Equation 12 and 13, we get
\[
R_{A^{(p)}}^{H,j} [T_j^{\text{as}}(u)] \leq R_{A^{(p)}}^{H,j-1} [T_j^{\text{as}}_{j-1}(u)]
\] (14)

Case 2b: \(\text{lev}(y_j') = j \)

\[
\langle A^{-1}(p), \ell_{y_j'^{1:n_{j-1}}}^{H,j-1} \rangle - \langle A^{(p)}, \ell_{y_j'}^{H,j} \rangle \leq \langle A^{-1}(p), \epsilon_{y_j'}^{H,j-1} \rangle - \langle A^{(p)}, \epsilon_{y_j'}^{H,j} \rangle \\
= \sum_{y \in N_{j-1}} A_{y'}^{-1}(p)(\ell^H(y, P(y_j')) - \ell^H(y_j', y_j')) \\
= \sum_{y \in N_{j-1}} A_{y'}^{-1}(p)(-\ell^H(y_j', P(y_j')))
\] (15)

Also,
\[
\langle A^{-1}(p), \ell_{y_j'^{1:n_{j-1}}}^{H,j} \rangle - \langle A^{(p)}, \ell_{y_j'}^{H,j} \rangle = \sum_{y \in N_{j-1}} S_y(p)(\ell^H(P(y), y_j') - \ell^H(y, y_j')) \\
= \sum_{y \in N_{j-1}} S_y(p)(-\ell^H(y, P(y))) + S_{y_j'}(p)(\ell^H(y_j', P(y_j'))) .
\] (16)
Adding Equations 12, 15 and 16, we get
\[
R_{A^j(p)}^{H,j-1}[\mathcal{Y}^\text{cas}](u) \leq R_{A^j-1(p)}^{H,j-1}[\mathcal{Y}^\text{cas}_j](u) + (2S_y(p) - 1) \cdot \beta_j.
\]
Inequality 17 follows because by the definitions of \(y_j\) and Theorem 1, we have \(S_y(p) \geq \frac{1}{2}\).

Also, we have that
\[
R_{A^j(p)}^{H,j+\alpha_j}[\mathcal{Y}_j](u_j) = R_{A^j(p)}^{H,j}[\mathcal{Y}_j](u_j)
= \frac{1}{2} - \min_{y \in [n]\cup \{\perp\}} \langle A^j(p), \ell^\text{H}_{y_j} \rangle
\geq \frac{1}{2} - \langle A^j(p), \ell^\text{H}_{y_j} \rangle
= \frac{1}{2} - (1 - S_y(p))
= S_y(p) - \frac{1}{2}.
\]

Putting Equations 17 and 18 together, we have that
\[
R_{A^j(p)}^{H,j}[\mathcal{Y}^\text{cas}](u) \leq R_{A^j-1(p)}^{H,j-1}[\mathcal{Y}^\text{cas}_j](u) + 2\beta_j \cdot R_{A^j(p)}^{H,j+\alpha_j}[\mathcal{Y}_j](u_j).
\]

Putting the results for case 1, case 2a and case 2b, from Equations 11, 14 and 19 respectively, we have
\[
R_{A^j(p)}^{H,j}[\mathcal{Y}^\text{cas}](u) \leq R_{A^j-1(p)}^{H,j-1}[\mathcal{Y}^\text{cas}_j](u) + \gamma_j(u_j) \cdot R_{A^j(p)}^{H,j+\alpha_j}[\mathcal{Y}_j](u_j).
\]

Now the proof of Lemma 3 follows from certain simple considerations.

Lemma. For any distribution \(D\) over \(X \times [n]\), let \(A^j(D)\) be the distribution over \(X \times [n]\) given by the distribution of \((X, \text{anc}_j(Y))\) with \((X, Y) \sim D\). For all \(j \in [h]\), let \(f_j : X \to \mathbb{R}^d\) be such that \(f(x) = [f_1(x)^\top, \ldots, f_h(x)^\top]^\top\). Then for all distributions \(D\) over \(X \times [n]\) and all functions \(f : X \to \mathbb{R}^d\)
\[
R_D^{H}[\mathcal{Y}^\text{cas} \circ f] \leq \sum_{j=1}^h 2\alpha_j \cdot R_{A^j(p)}^{H,j+\alpha_j}[\mathcal{Y}_j \circ f_j].
\]

Proof. Using Lemma 8 and by the observation that \(\beta_j \leq \alpha_j\), we have for all \(p \in \Delta_n, u \in \mathbb{R}^d\) that
\[
R_p^{H}[\mathcal{Y}^\text{cas}(u)] \leq \sum_{j=1}^h 2\alpha_j \cdot R_{A^j(p)}^{H,j+\alpha_j}[\mathcal{Y}_j(u_j)].
\]

Let \(f : X \to \mathbb{R}^d\) be a function. Then for all \(x \in X\),
\[
R_p^{H}[\mathcal{Y}^\text{cas}(f(x))] \leq \sum_{j=1}^h 2\alpha_j \cdot R_{A^j(p)(x)}^{H,j+\alpha_j}[\mathcal{Y}_j(u_j)].
\]

Observe that the the marginal distribution over \(X\) for \(A^j(D)\) is exactly the same as for \(D\), while the conditional probability distribution for the distribution \(A^j(D)\) at \(x\) is exactly equal to \(A^j(p(x))\). The Lemma now immediately follows from linearity of expectation.

\[\square\]
B.3. Proof of Theorem 4

Theorem. For all \(j \in [h] \), let \(\psi^j : [n_j] \times \mathbb{R}^{d_j} \) and \(Y^j : \mathbb{R}^{d_j} \rightarrow [n_j] \) be such that for all \(f_j : \mathcal{X} \rightarrow \mathbb{R}^{d_j} \), and all distributions \(D \) over \(\mathcal{X} \times [n_j] \) we have

\[
R_{D^{\psi^j}}^{Y^j} \leq C \cdot R_D^{\psi^j}[f_j],
\]

for some constant \(C > 0 \). Then for all \(f : \mathcal{X} \rightarrow \mathbb{R}^{d} \) and distributions \(D \) over \(\mathcal{X} \times [n] \),

\[
R_{D^{\psi}}^{Y_{\text{cas}}} \leq 2\alpha_h C \cdot R_D^{\psi}[f].
\]

Proof. Fix \(u \in \mathbb{R}^{d}, p \in \Delta_n \). From Lemma 3, we have that

\[
R_{p^{\psi}}^{Y_{\text{cas}}}(u) \leq \sum_{j=1}^{h} 2\alpha_j \cdot R_{A_j(p)}^{\psi_j}(u_j)
\]

\[
\leq 2\alpha_h \sum_{j=1}^{h} R_{A_j(p)}^{\psi_j}(u_j)
\]

\[
\leq 2\alpha_h C \cdot \sum_{j=1}^{h} R_{A_j(p)}^{\psi_j}(u_j)
\]

\[
= 2\alpha_h C \cdot R_{p^{\psi}}[u].
\]

The proof now simply follows from linearity of expectation.

\(\square\)

B.4. Proof of Theorem 6

While Theorem 2 from Ramaswamy et al. (2015), gives an excess risk bound for the abstain loss excess risk in terms of the OvA-surrogate risk, one can easily get a more refined bound as well from the results of Ramaswamy et al. (2015).

Lemma 9 (Ramaswamy et al., 2015). Let \(\tau \in (-1, 1) \). For all \(u \in \mathbb{R}^n, p \in \Delta_n \), and \(A = 1(Y_{D^{\psi}}(u) = n + 1) \). Then for all \(p \in \Delta_n \)

\[
R_{p^{\psi}}^{Y_{D^{\psi}}} \leq \frac{1}{2 \max(\alpha_j + \beta_j) \cdot R_{p^{\psi}}}[f]
\]

We are now ready to prove Theorem 6.

Theorem. For \(1 \leq j \leq h \), let \(\tau_j = \frac{\alpha_j - \beta_j}{\alpha_j + \beta_j} \). Let the component surrogates and predictors of \(\psi_{\text{cas}} \) and \(Y_{\text{cas}} \) be \(\psi^j = \psi_{D^{\psi_j}}, \) and \(Y^j = Y_{D^{\psi_j}} \). Then, for all distributions \(D \) and functions \(f : \mathcal{X} \rightarrow \mathbb{R}^{d} \),

\[
R_{D^{\psi}}^{Y_{\text{cas}}} \leq \frac{1}{2 \max(\alpha_j + \beta_j) \cdot R_{D^{\psi}}}[f]
\]

Proof. Let \(u \in \mathbb{R}^{d}, p \in \Delta_n \). From Lemmas 8 and 9, we have that

\[
R_{p^{\psi}}^{Y_{\text{cas}}}(u) \leq \sum_{j=1}^{h} \gamma_j(u_j) \cdot R_{A_j(p)}^{\psi_j}(u_j)
\]

\[
\leq \sum_{j=1}^{h} \left(\frac{1}{2 \alpha_j + \beta_j} \right) \cdot R_{A_j(p)}^{\psi_j}(u_j)
\]

\[
\leq \sum_{j=1}^{h} \left(\frac{\alpha_j \cdot 1(Y_{D^{\psi_j}}(u_j) = \perp) + \beta_j \cdot 1(Y_{D^{\psi_j}}(u_j) \neq \perp)}{(1 + \tau_j)} \right) \cdot R_{A_j(p)}^{\psi_j}(u_j)
\]

\[
= \sum_{j=1}^{h} \left(\frac{\alpha_j \cdot 1(Y_{D^{\psi_j}}(u_j) = \perp) + \beta_j \cdot 1(Y_{D^{\psi_j}}(u_j) \neq \perp)}{(1 + \tau_j)} \right) \cdot R_{A_j(p)}^{\psi_j}(u_j)
\]
Convex Calibrated Surrogates for Hierarchical Classification

For each $j \in [h]$, the coefficients of both the terms within parentheses (i.e. $\frac{\alpha_j}{1+\tau_j}$ and $\frac{\beta_j}{1+\tau_j}$) both evaluate to $\frac{\alpha_j + \beta_j}{2}$ when the thresholds τ_j are set as $\tau_j = \frac{\alpha_j - \beta_j}{\alpha_j + \beta_j}$. In fact it can easily be seen that this value of τ_j minimizes the worst-case coefficient of $R_{\mathcal{H}(p)}^{\text{cas}}[u_j]$ in the bound. Thus, we have

$$R_{\mathcal{H}}^{\mathcal{H}}[\mathcal{H}(u)] \leq \frac{1}{2} \max_{j \in [h]} (\alpha_j + \beta_j) \cdot R_{\mathcal{H}(p)}^{\text{cas}}[u_j]$$

The Theorem now follows from linearity of expectation. \qed