Covering Numbers, Pseudo-Dimension, and Fat-Shattering Dimension

1 Introduction

So far we have seen how to obtain high confidence bounds on the generalization error $\er(h_S, \mathcal{H}, D)$ of a binary classifier h_S learned by an algorithm from a function class $\mathcal{H} \subseteq \{-1, 1\}^X$ of limited capacity, using the ideas of uniform convergence. We saw the use of the growth function $\Pi_{\mathcal{H}}$ to measure the capacity of the class \mathcal{H}, as well as the VC-dimension $\text{VCdim}(\mathcal{H})$, which provides a one-number summary of the capacity of \mathcal{H}.

In this lecture we will consider the problem of regression, or learning of real-valued functions. Here we are given a training sample $S = \{(x_1, y_1), \ldots, (x_m, y_m)\} \in (X \times \mathcal{Y})^m$ for some $\mathcal{Y} \subseteq \mathbb{R}$, assumed now to be drawn from D^m for some distribution D on $X \times \mathcal{Y}$, and the goal is to learn from this sample a real-valued function $f_S : X \rightarrow \mathbb{R}$ that has low generalization error $\er_D[f_S]$ w.r.t. some appropriate loss function $\ell : \mathcal{Y} \times \mathbb{R} \rightarrow [0, \infty)$. We have seen how to obtain high confidence bounds on the generalization error of the learned function, $\er_D[f_S]$. Again, we will consider learning algorithms that learn f_S from a function class $\mathcal{F} \subseteq \mathbb{R}^X$ of limited capacity, and then bound generalization error bounds for such algorithms via a uniform convergence result that upper bounds the probability

$$P_{S \sim D^m} \left(\sup_{f \in \mathcal{F}} \left| \er_D[f] - \er_S[f] \right| \geq \epsilon \right).$$

However in order to derive such a result, we will need a different notion of capacity for a class of real-valued functions \mathcal{F}. In particular, we will use the covering numbers of \mathcal{F}, which will play a role analogous to that played by the growth function in the case of binary-valued function classes.

2 Covering Numbers

We start by considering covering numbers of subsets of a general metric space. We will then specialize this to subsets of Euclidean space, and use this to define covering numbers for a real-valued function class.

2.1 Covering Numbers in a General Metric Space

Let (A, d) be a metric space.¹ Let $W \subseteq A$ and let $\epsilon > 0$. A set $C \subseteq W$ is said to be a (proper) ϵ-cover of W w.r.t. d if for every $w \in W$, $\exists c \in C$ such that $d(w, c) < \epsilon$.² In other words, $C \subseteq W$ is an ϵ-cover of W w.r.t. d if the union of (open) d-balls of radius ϵ centered at points in C contains W:³

$$\bigcup_{c \in C} B_{d, \epsilon}(c) \supseteq W. \quad (1)$$

If W has a finite ϵ-cover w.r.t. d, then we define the ϵ-covering number of W (w.r.t. d) to be the cardinality of the smallest ϵ-cover of W:

$$\mathcal{N}(\epsilon, W, d) = \min \{|C| \mid C \text{ is an } \epsilon \text{-cover of } W \text{ w.r.t. } d\}. \quad (2)$$

¹ Recall that a metric space (A, d) consists of a set A together with a metric $d : A \times A \rightarrow [0, \infty)$ that satisfies the following for all $x, y, z \in A$: (1) $d(x, y) = 0$ if and only if $x = y$; (2) $d(x, y) = d(y, x)$; and (3) $d(x, z) \leq d(x, y) + d(y, z)$.

² Sometimes it is also convenient to consider improper covers $C \subseteq A$ which need not be contained in W.

³ Recall that the open d-ball centered at $x \in A$ is defined as $B_{d, \epsilon}(x) = \{y \in A \mid d(x, y) < \epsilon\}$.
If \(W \) does not have a finite \(\epsilon \)-cover w.r.t. \(d \), we take \(N(\epsilon, W, d) = \infty \). Thus the covering numbers of \(W \) can be viewed as measuring the ‘extent’ of \(W \) in \((A, d)\) at ‘granularity’ or ‘scale’ \(\epsilon \).

2.2 Covering Numbers in Euclidean Space

Consider now \(A = \mathbb{R}^n \). We can define a number of different metrics on \(\mathbb{R}^n \), including in particular the following:

\[
d_1(x, x') = \frac{1}{n} \sum_{i=1}^{n} |x_i - x'_i|
\]

(3)

\[
d_2(x, x') = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - x'_i)^2}
\]

(4)

\[
d_{\infty}(x, x') = \max_{i} |x_i - x'_i|.
\]

(5)

Accordingly, for any \(W \subseteq \mathbb{R}^n \), we can define the corresponding covering numbers \(N(\epsilon, W, d_p) \) for \(p = 1, 2, \infty \). It is easy to see that \(d_1(x, x') \leq d_2(x, x') \) (by Jensen’s inequality) and that \(d_2(x, x') \leq d_{\infty}(x, x') \), from which it follows that the corresponding covering numbers satisfy the relation

\[
N(\epsilon, W, d_1) \leq N(\epsilon, W, d_2) \leq N(\epsilon, W, d_{\infty}).
\]

(6)

2.3 Uniform Covering Numbers for a Real-Valued Function Class

Now let \(F \) be a class of real-valued functions on \(X \), and let \(x_1^m = (x_1, \ldots, x_m) \in \mathcal{X}^m \). Then \(F_{|x_1^m} \subseteq \mathbb{R}^m \). For any \(\epsilon > 0 \) and \(m \in \mathbb{N} \), the uniform \(d_p \) covering numbers of \(F \) (for \(p = 1, 2, \infty \)) are defined as

\[
N_p(\epsilon, F, m) = \max_{x_1^m \in \mathcal{X}^m} N(\epsilon, F_{|x_1^m}, d_p)
\]

(7)

if \(N(\epsilon, F_{|x_1^m}, d_p) \) is finite for all \(x_1^m \in \mathcal{X}^m \), and \(N_p(\epsilon, F, m) = \infty \) otherwise. This should be compared with the definition of growth function for a class of binary-valued functions \(H \), which also involved a maximum over \(x_1^m \in \mathcal{X}^m \): in that case, \(H_{|x_1^m} \) was finite, and the maximum was over the cardinality of \(H_{|x_1^m} \); here, \(F_{|x_1^m} \) may in general be infinite, and the maximum is over the ‘extent’ of \(F_{|x_1^m} \) in \(\mathbb{R}^m \) at scale \(\epsilon \), as measured using the metric \(d_p \). In particular, for \(H \subseteq \{-1, 1\}^X \), we have that for any \(\epsilon \leq 2 \), \(N(\epsilon, H_{|x_1^m}, d_{\infty}) = |H_{|x_1^m}| \), and therefore \(N_p(\epsilon, H, m) = \Pi_{H}(m) \). Thus the uniform covering numbers can be viewed as generalizing the notion of growth function to classes of real-valued functions.

Note that the term ‘uniform’ here refers to the maximum over all \(x_1^m \in \mathcal{X}^m \) (of the covering numbers of \(F_{|x_1^m} \) in \(\mathbb{R}^m \)), and is unrelated to the use of the term ‘uniform’ in ‘uniform convergence’, which refers to the supremum over functions \(f \in F \). Unless otherwise stated, in what follows we will refer to the uniform covering numbers of a function class \(F \) as simply the covering numbers of \(F \).

3 Uniform Convergence in a Real-Valued Function class \(F \)

We can assume that functions in \(F \) take values in some set \(\mathcal{Y} \subseteq \mathbb{R} \), so that \(F \subseteq \mathcal{Y}^X \). We will require the loss function \(\ell \) to be bounded, i.e. we will assume \(\exists B > 0 \) such that \(0 \leq \ell(y, \hat{y}) \leq B \forall y \in \mathcal{Y}, \hat{y} \in \hat{\mathcal{Y}} \). We will find it useful to define for any function class \(F \subseteq \mathcal{Y}^X \) and loss \(\ell : \mathcal{Y} \times \hat{\mathcal{Y}} \rightarrow [0, B] \) the loss function class \(\ell_F \subseteq [0, B]^{X \times \mathcal{Y}} \) given by

\[
\ell_F = \left\{ \ell_f : X \times \mathcal{Y} \rightarrow [0, B] \bigg| \ell_f(x, y) = \ell(y, f(x)) \text{ for some } f \in F \right\}.
\]

(8)

We will first prove a uniform convergence result for general losses \(\ell \) as above in terms of the \(d_1 \) covering numbers of the loss function class \(\ell_F \), and will then show that for many losses \(\ell \), including the squared loss when \(\mathcal{Y} \) and \(\hat{\mathcal{Y}} \) are bounded, the \(d_1 \) covering numbers of \(\ell_F \) can further be bounded in terms of the \(d_1 \) covering numbers of \(F \).
Theorem 3.1. Let $\mathcal{Y}, \mathcal{Y}^\prime \subseteq \mathbb{R}^4$. Let $\mathcal{F} \subseteq \mathcal{Y}^\times$, and let $\ell: \mathcal{Y} \times \mathcal{Y}^\prime \rightarrow [0, B]$. Let D be any distribution on $\mathcal{X} \times \mathcal{Y}$. For any $\epsilon > 0$,

$$P_{S \sim D^m} \left(\sup_{f \in \mathcal{F}} \left| \epsilon_r f_D[f] - \epsilon_r f_S[f] \right| \geq \epsilon \right) \leq 4N_1(\epsilon/2, \ell, 2m) e^{-m\epsilon^2/2B^2}.$$ (9)

Proof. The proof uses similar techniques as in the proof of uniform convergence for the $\ell_{0,1}$ loss in the binary case that we saw in Lecture 3, and has the same 4 broad steps. The key difference is in the reduction to a finite class (step 3).

Step 1: Symmetrization. Following the same steps as in Lecture 3, we can show that for $m\epsilon^2 \geq 8B^2$,

$$P_{S \sim D^m} \left(\sup_{f \in \mathcal{F}} \left| \epsilon_r f_D[h] - \epsilon_r f_S[h] \right| \geq \epsilon \right) \leq 2P_{(S, \tilde{S}) \sim D^m \times D^m} \left(\sup_{f \in \mathcal{F}} \left| \epsilon_r f_S[f] - \epsilon_r f_{\tilde{S}}[f] \right| \geq \frac{\epsilon}{2} \right).$$ (10)

Step 2: Swapping permutations. Again using the same argument as in Lecture 3, we can show that

$$P_{(S, \tilde{S}) \sim D^m \times D^m} \left(\sup_{f \in \mathcal{F}} \left| \epsilon_r f_S[f] - \epsilon_r f_{\tilde{S}}[f] \right| \geq \frac{\epsilon}{2} \right) \leq \sup_{(S, \tilde{S}) \in (\mathcal{X} \times \mathcal{Y})^{2m}} \left[P_{\sigma \in \Gamma_{2m}} \left(\sup_{f \in \mathcal{F}} \left| \epsilon_r f_{\sigma[S]}[f] - \epsilon_r f_{\sigma[\tilde{S}]}[f] \right| \geq \frac{\epsilon}{2} \right) \right].$$ (11)

Step 3: Reduction to a finite class. Fix any $(S, \tilde{S}) \in (\mathcal{X} \times \mathcal{Y})^{2m}$, and for simplicity, define $(x_{m+1}, y_{m+1}) = (\tilde{x}_i, \tilde{y}_i) \forall i \in [m]$. Now consider $(\ell_x)(S, \tilde{S}) \in [0, B]^{2m}$. Let $\mathcal{G} \subseteq \mathcal{F}$ be such that $(\ell_x)(S, \tilde{S})$ is an $\epsilon/8$-cover of $(\ell_x)(S, \tilde{S})$ w.r.t. d_1. Clearly, we can take $|\mathcal{G}| = N(\epsilon/8, (\ell_x)(S, \tilde{S}), d_1) \leq N_1(\epsilon/8, \ell_x, 2m)$; since ℓ_x maps to a bounded interval, this is a finite number. Now consider any $\sigma \in \Gamma_{2m}$. We claim that if $f \in \mathcal{F}$ such that

$$\left| \epsilon_r f_{\sigma[S]}[f] - \epsilon_r f_{\sigma[\tilde{S}]}[f] \right| \geq \frac{\epsilon}{2},$$ (12)

then $\exists g \in \mathcal{G}$ such that

$$\left| \epsilon_r f_{\sigma[S]}[g] - \epsilon_r f_{\sigma[\tilde{S}]}[g] \right| \geq \frac{\epsilon}{4}.$$ (13)

To see this, let $f \in \mathcal{F}$ be such that (12) holds. Take any $g \in \mathcal{G}$ for which

$$\frac{1}{2m} \sum_{i=1}^{2m} |f(x_i, y_i) - f(x_i, y_i)| < \frac{\epsilon}{8}.$$ (14)

Such a g exists since $(\ell_x)(S, \tilde{S})$ is an $\epsilon/8$-cover of $(\ell_x)(S, \tilde{S})$ w.r.t. d_1. We will show that g satisfies (13). In particular, we have

$$\begin{align*}
\frac{\epsilon}{4} &\leq \left| \epsilon_r f_{\sigma[S]}[g] - \epsilon_r f_{\sigma[\tilde{S}]}[g] \right| \\
&\leq \left| \left(\epsilon_r f_{\sigma[S]}[f] - \epsilon_r f_{\sigma[\tilde{S}]}[g] \right) - \left(\epsilon_r f_{\sigma[S]}[f] - \epsilon_r f_{\sigma[\tilde{S}]}[g] \right) + \left(\epsilon_r f_{\sigma[S]}[g] - \epsilon_r f_{\sigma[\tilde{S}]}[g] \right) \right| \\
&\leq \left| \epsilon_r f_{\sigma[S]}[f] - \epsilon_r f_{\sigma[\tilde{S}]}[g] \right| + \left| \epsilon_r f_{\sigma[S]}[f] - \epsilon_r f_{\sigma[\tilde{S}]}[g] \right| + \left| \epsilon_r f_{\sigma[S]}[g] - \epsilon_r f_{\sigma[\tilde{S}]}[g] \right| \\
&= \left| \epsilon_r f_{\sigma[S]}[g] - \epsilon_r f_{\sigma[\tilde{S}]}[g] \right| + \frac{1}{m} \sum_{i=1}^{m} \left(\ell_f(x_i, y_i) - \ell_g(x_i, y_i) \right) + \frac{1}{m} \sum_{i=m+1}^{2m} \left(\ell_f(x_{i+1}, y_{i+1}) - \ell_g(x_{i+1}, y_{i+1}) \right) \\
&\leq \left| \epsilon_r f_{\sigma[S]}[g] - \epsilon_r f_{\sigma[\tilde{S}]}[g] \right| + \frac{1}{m} \sum_{i=1}^{m} \left(\ell_f(x_{i(i)}, y_{i(i)}) - \ell_g(x_{i(i)}, y_{i(i)}) \right) \\
&\leq \left| \epsilon_r f_{\sigma[S]}[g] - \epsilon_r f_{\sigma[\tilde{S}]}[g] \right| + \frac{1}{4} \epsilon (by \ (14)).
\end{align*}$$ (20)

\mathcal{Y} can be thought of as the space of ‘true labels’, and \mathcal{Y}^\prime the space of ‘predicted labels’.
The claim follows. Thus we have

\[
P_{\sigma \in \Gamma_{2m}} \left(\sup_{f \in \mathcal{F}} \left| \mathcal{E}_{\sigma}(S)[f] - \mathcal{E}_{\sigma}(\hat{S})[f] \right| \geq \frac{\epsilon}{2} \right) \leq \mathcal{N}_1(\epsilon/8, \ell_x, 2m) \max_{g \in \mathcal{G}} P_{\sigma \in \Gamma_{2m}} \left(\left| \mathcal{E}_{\sigma}(S)[g] - \mathcal{E}_{\sigma}(\hat{S})[g] \right| \geq \frac{\epsilon}{4} \right) \tag{21}\]

which yields the following corollary:

\[
P_{\sigma \in \Gamma_{2m}} \left(\sup_{f \in \mathcal{F}} \left| \mathcal{E}_{\sigma}(S)[f] - \mathcal{E}_{\sigma}(\hat{S})[f] \right| \geq \frac{\epsilon}{2} \right) \leq \mathcal{N}_1(\epsilon/4, \ell_x, m) \max_{g \in \mathcal{G}} P_{\sigma \in \Gamma_{2m}} \left(\left| \mathcal{E}_{\sigma}(S)[g] - \mathcal{E}_{\sigma}(\hat{S})[g] \right| \geq \frac{\epsilon}{4} \right) \tag{22}\]

Step 4: Hoeffding’s inequality. As in Lecture 3, Hoeffding’s inequality can now be used to show that for any \(g \in \mathcal{G} \),

\[
P_{\sigma \in \Gamma_{2m}} \left(\left| \mathcal{E}_{\sigma}(S)[g] - \mathcal{E}_{\sigma}(\hat{S})[g] \right| \geq \frac{\epsilon}{4} \right) \leq 2e^{-m \epsilon^2/32B^2} \tag{23}\]

Putting everything together yields the desired result for \(m \epsilon^2 \geq 8B^2 \); for \(m \epsilon^2 < 8B^2 \), the result holds trivially.

The above result yields a high-confidence bound on the generalization error of a function learned from \(\mathcal{F} \) in terms of covering numbers of \(\ell_x \). For ‘well-behaved’ loss functions \(\ell \), these can be further bounded in terms of covering numbers of \(\mathcal{F} \):

Lemma 3.2. Let \(\mathcal{Y}, \hat{\mathcal{Y}} \subseteq \mathbb{R} \). Let \(\mathcal{F} \subseteq \hat{\mathcal{Y}}^X \) and let \(\ell : \mathcal{Y} \times \hat{\mathcal{Y}} \rightarrow [0, B] \). If \(\ell \) is Lipschitz in its second argument with Lipschitz constant \(L > 0 \), i.e.

\[
|\ell(y, \hat{y}_1) - \ell(y, \hat{y}_2)| \leq L|\hat{y}_1 - \hat{y}_2| \quad \forall \ y \in \mathcal{Y}, \ \hat{y}_1, \hat{y}_2 \in \hat{\mathcal{Y}},
\]

then for any \(m \in \mathbb{N} \),

\[
\mathcal{N}_1(\epsilon, \ell_x, m) \leq \mathcal{N}_1(\epsilon/L, \mathcal{F}, m).
\]

Proof. Let \(S = ((x_1, y_1), \ldots, (x_m, y_m)) \in (\mathcal{X} \times \mathcal{Y})^m \), and let \(f, g \in \mathcal{F} \). Then

\[
\frac{1}{m} \sum_{i=1}^m |\ell_f(x_i, y_i) - \ell_g(x_i, y_i)| = \frac{1}{m} \sum_{i=1}^m |\ell(y_i, f(x_i)) - \ell(y_i, g(x_i))| \leq \frac{L}{m} \sum_{i=1}^m |f(x_i) - g(x_i)|.
\]

Thus any \(d_1 \epsilon/L \)-cover for \(\mathcal{F}_{x_1} \) is a \(d_1 \epsilon \)-cover for \((\ell_x)_S \), which implies the result.

This yields the following corollary:

Corollary 3.3. Let \(\mathcal{Y}, \hat{\mathcal{Y}} \subseteq \mathbb{R} \), \(\mathcal{F} \subseteq \hat{\mathcal{Y}}^X \), and \(\ell : \mathcal{Y} \times \hat{\mathcal{Y}} \rightarrow [0, B] \) such that \(\ell \) is Lipschitz in its second argument with Lipschitz constant \(L > 0 \). Let \(D \) be any distribution on \(\mathcal{X} \times \mathcal{Y} \). Then for any \(\epsilon > 0 \):

\[
P_{\mathcal{S} \sim D^m} \left(\sup_{f \in \mathcal{F}} \left| \mathcal{E}_{\mathcal{S}}[f] - \mathcal{E}_{\mathcal{S}}[\hat{f}] \right| \geq \epsilon \right) \leq 4\mathcal{N}_1(\epsilon/8L, \mathcal{F}, 2m) e^{-m \epsilon^2/32B^2} \tag{28}\]

As an example, consider the squared loss \(\ell_{sq}(y, \hat{y}) = (\hat{y} - y)^2 \). It can be shown that if \(\mathcal{Y}, \hat{\mathcal{Y}} \) are bounded, then \(\ell_{sq} \) is bounded and Lipschitz. In particular, for \(\mathcal{Y} = \hat{\mathcal{Y}} = [-1, 1] \), we have \(0 \leq \ell_{sq}(y, \hat{y}) \leq 4 \forall \ y \in \mathcal{Y}, \hat{y} \in \hat{\mathcal{Y}} \).
and ℓ_{sq} is Lipschitz with Lipschitz constant $L = 4$:

$$
\left| \ell_{sq}(y, \hat{y}_1) - \ell_{sq}(y, \hat{y}_2) \right| = \left| (y - \hat{y}_1)^2 - (y - \hat{y}_2)^2 \right| = \left| \hat{y}_1^2 - \hat{y}_2^2 - 2\hat{y}_1(y - \hat{y}_2) \right| \leq |\hat{y}_1 + \hat{y}_2| |\hat{y}_1 - \hat{y}_2| + 2|y| |\hat{y}_1 - \hat{y}_2| \leq 4|\hat{y}_1 - \hat{y}_2| \quad (\text{since } y, \hat{y}_1, \hat{y}_2 \in [-1, 1]).
$$

(29) (30) (31) (32)

Thus when both labels and predictions are in $[-1, 1]$, one gets for the squared loss:

Corollary 3.4. Let $\mathcal{Y} = \mathcal{Y} = [-1, 1]$, $\mathcal{F} \subseteq \mathcal{F}^X$, and $\ell_{sq} : \mathcal{Y} \times \mathcal{Y} \to [0, 4]$ be given by $\ell_{sq}(y, \hat{y}) = (\hat{y} - y)^2$. Let D be any distribution on $\mathcal{X} \times \mathcal{Y}$. Then for any $\epsilon > 0$:

$$
P_{S \sim D} = \left(\sup_{f \in \mathcal{F}} \left| \mathbb{E}_{D}^S[f] - \mathbb{E}_{D}^{\mathcal{F}}[f] \right| \geq \epsilon \right) \leq 4N_1(\epsilon/32, \mathcal{F}, 2m) e^{-m\epsilon^2/512}.
$$

(33)

Exercise. Show that for $\mathcal{Y} = \mathcal{Y} = [-1, 1]$, the absolute loss given by $\ell_{abs}(y, \hat{y}) = |\hat{y} - y|$ $\forall y \in \mathcal{Y}, \hat{y} \in \mathcal{Y}$ is bounded and is Lipschitz in its second argument with Lipschitz constant $L = 1$.

4 Pseudo-Dimension and Fat-Shattering Dimension

Just as the growth function $\Pi_\mathcal{H}(2m)$ needed to be sub-exponential in m for the uniform convergence result in the binary classification case to be meaningful, the covering numbers $N_1(\epsilon/8, \ell_{F}, 2m)$ or $N_1(\epsilon/8L, \mathcal{F}, 2m)$ need to be sub-exponential in m for the above result to be meaningful. In the binary case, we saw that if the VC-dimension of \mathcal{H} is finite, then the growth function of \mathcal{H} grows polynomially in m. Analogous results can be shown to hold for the covering numbers. We provide some basic definitions and results here; further details can be found for example in [1].

Definition (Pseudo-dimension). Let $\mathcal{F} \subseteq \mathcal{Y}$ and let $x_1^m = (x_1, \ldots, x_m) \in \mathcal{X}^m$. We say x_1^m is pseudo-shattered by \mathcal{F} if there exist m real numbers $r_1, \ldots, r_m \in \mathbb{R}$ such that $\forall b = (b_1, \ldots, b_m) \in \{-1, 1\}^m$, $\exists f_b \in \mathcal{F}$ such that $\text{sign}(f_b(x_i) - r_i) = b_i \forall i \in [m]$. The pseudo-dimension of \mathcal{F} is the cardinality of the largest set of points in \mathcal{X} that can be pseudo-shattered by \mathcal{F}:

$$
Pdim(\mathcal{F}) = \max \left\{ m \in \mathbb{N} \mid \exists x_1^m \in \mathcal{X}^m \text{ such that } x_1^m \text{ is pseudo-shattered by } \mathcal{F} \right\}.
$$

If \mathcal{F} pseudo-shatters arbitrarily large sets of points in \mathcal{X}, we say $\text{Pdim}(\mathcal{F}) = \infty$.

Fact. If \mathcal{F} is a vector space of real-valued functions, then $\text{Pdim}(\mathcal{F}) = \dim(\mathcal{F})$. For example, for the class of all affine functions over \mathbb{R}^n given by $\mathcal{F} = \{ f : \mathbb{R}^n \to \mathbb{R} \mid f(x) = w \cdot x + b \text{ for some } w \in \mathbb{R}^n, b \in \mathbb{R} \}$, we have $\text{Pdim}(\mathcal{F}) = n + 1$. Clearly, if $\mathcal{F}' \subseteq \mathcal{F}$, $\text{Pdim}(\mathcal{F}') \leq \text{Pdim}(\mathcal{F})$.

Definition (Fat-shattering dimension). Let $\mathcal{F} \subseteq \mathcal{Y}$ and let $x_1^m = (x_1, \ldots, x_m) \in \mathcal{X}^m$. We say x_1^m is fat-shattered by \mathcal{F} if there exist m real numbers $r_1, \ldots, r_m \in \mathbb{R}$ such that $\forall b = (b_1, \ldots, b_m) \in \{-1, 1\}^m$, $\exists f_b \in \mathcal{F}$ such that $b_i(f_b(x_i) - r_i) \geq \gamma \forall i \in [m]$. The fat-dimension of \mathcal{F} or the fat-shattering dimension of \mathcal{F} at scale γ is the cardinality of the largest set of points in \mathcal{X} that can be fat-shattered by \mathcal{F}:

$$
fat_{\mathcal{F}}(\gamma) = \max \left\{ m \in \mathbb{N} \mid \exists x_1^m \in \mathcal{X}^m \text{ such that } x_1^m \text{ is } \gamma \text{-shattered by } \mathcal{F} \right\}.
$$

If \mathcal{F} γ-shatters arbitrarily large sets of points in \mathcal{X}, we say $\text{fat}_{\mathcal{F}}(\gamma) = \infty$.

Clearly, $\text{fat}_{\mathcal{F}}(\gamma) \leq \text{Pdim}(\mathcal{F}) \forall \gamma > 0$. The fat-shattering dimension is often called a \emph{scale-sensitive} dimension since it depends on the scale γ. Both quantities, when finite, can be used to bound the covering numbers of a function class \mathcal{F} whose functions take values in a bounded range:
Theorem 4.1. Let $\mathcal{F} \subseteq [a, b]^X$ for some $a \leq b$. Let $0 < \epsilon \leq b - a$, and let $\text{fat}_{\mathcal{F}}(\epsilon/8) = d < \infty$. Then for $m \geq d \geq 1$,

$$\mathcal{N}_1(\epsilon, \mathcal{F}, m) = O\left(\left(\frac{1}{\epsilon}\right)^d \log_2(m/\epsilon d)\right).$$

Theorem 4.2. Let $\mathcal{F} \subseteq [a, b]^X$ for some $a \leq b$. Let $\text{Pdim}(\mathcal{F}) = d < \infty$. Then for all $0 < \epsilon \leq b - a$ and $m \in \mathbb{N}$,

$$\mathcal{N}_1(\epsilon, \mathcal{F}, m) = O\left(\left(\frac{1}{\epsilon}\right)^d \right).$$

5 Next Lecture

In the next lecture, we will return to binary classification, but will focus on learning functions of the form $h(x) = \text{sign}(f(x))$ for some real-valued function f, and will see how the quantities considered in this lecture can be useful in such situations.

References